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Expression of Wild-Type and Mutant Murine a-Lactalbumin cDNAs 
in Baculovirus-Infected Insect Cells 
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Production of wild-type and mutant mouse a-lactalbumins in baculovirus-infected insect cells is 
described. The efficiency of this expression system and its adequacy for studying the structure- 
function relationship in this subunit of lactose synthase are compared to those previously reported. 
Enzymatic characterization of the recombinant proteins is reported. The wild-type protein behaves 
as milk-purified a-lactalbumin, and one of the mutants was found to be unable to induce lactose 
synthesis i n  vitro. 
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INTRODUCTION 

a-Lactalbumin (alac) is one of the major whey pro- 
teins of milk. This calcium metalloprotein promotes 
lactose synthesis in the mammary epithelial cells by 
interacting with and modifying the substrate specificity 
of a UDPgalactosyltransferase (EC 2.4.1.22) (Ebner and 
Brodbeck, 1968). It has sequence similarity with c-type 
lysozymes, and the similar organization of both genes 
suggests a common ancestor (Quasba and Safaya, 1984). 
However, studies aimed at a better understanding of 
the evolution of alac from lysozyme and of its structure- 
function relationship have just recently started with the 
development of efficient expression systems. These 
include the use of Escherichia coli (Wang et al., 1989; 
Kumagai et al., 1991, 1992; Grobler et al., 19941, 
Saccharomyces cerevisiae (Takeda et al., 1990; Viaene 
et al., 19911, and transgenic animals (Vilotte et al., 1989; 
Soulier et al., 1992; Hochi et al., 1992). 

The present study investigates the baculovirus system 
as an alternative to produce alac and reports the 
characterization of some recombinant alacs. 

MATERIALS AND METHODS 

Reagents. AcMNPV-C6 (Kitts et al., 1990) and pVL941 
DNA (Luckow and Summers, 1988), Spodopteria frugiperdu 
cells (Sf9), and GRACE medium (Gibco, 074-90097P1 were 
kindly provided by Dr. J. Cohen (INRA, Jouy-en-Josas). Cells 
were cultured at 28 "C in GRACE medium supplemented with 
10% fetal calf serum, penicillin (50 units/mL), and streptomy- 
cin (50 pg/mL). Bsu361, Tuq DNA polymerase, and uridine 
diphosphate galactose ([14C]U-galactose) were purchased from 
New England Biolabs, Promega, and DuPont NEN, respec- 
tively, and all other chemicals were obtained from Sigma. 

Procedure. Site-Directed Mutagenesis. cDNA 19 (Vilotte 
et al., 19921, which encompassed the entire coding sequence 
of mouse alac, was used as a template for site-directed 
mutagenesis using a polymerase chain reaction (PCR)-based 
method (Landt et al., 1990; Figure 1). Mutated cDNAs were 
cloned into pUC 19, sequenced using the chain termination 
method (Sanger et al., 19771, and subcloned into pVL941 at 
its BumHI site. Orientation of the insert with regard to the 
polyhedrin promoter was determined by restriction mapping. 
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Isolation and Amplification of Recombinant Baculouirus. 
Sf9 cells were transfected using a calcium phosphate copre- 
cipitation method. One microgram of AcMNPV-C6 DNA 
linearized by digestion with Bsu36I was cotransfected along 
with 5 pg of recombinant pVL941 transfer vectors (Kitts et 
al., 1990). Separations of parental and recombinant viruses 
followed the procedure of Tosser et al. (1992). 

Production and Characterization of Recombinant dacs. Sf9 
cells in six-well plates were infected at high multiplicity (10 
pfdcell) and culture medium (1.5 mL/106 cells) collected 72 h 
postinfection. Medium was clarified by centrifugation (1OOOg 
for 5 min). Quantification of recombinant dacs present in the 
medium was performed by Western immunoblot analyses 
(Vilotte et al., 1989; Figure 1). alac activity of the culture 
medium was measured according to the method of Holpert and 
Cooper (1990) with the following modifications: Triton X-100, 
BSA, and glycerol were not added in the incubation solution, 
and the incubation time was reduced to 10 min. Separation 
of products from substrates was performed by Dowex 2 column 
chromatography. 

RESULTS 

Site-Directed Mutagenesis of Mouse alac cDNA. 
Mutations were targeted against the invariant amino 
acids Phe-31, His-32, Gln-117, and Trp-118 of the 
aromatic cluster I of alac (Acharya et al., 1989; Alex- 
andrescu et al., 19921, which are components of, or 
adjacent to a galactosyltransferase-binding site (Rich- 
ardson and Brew, 1980; Sinha and Brew, 1981; Shewale 
et al., 1984; Acharya et al., 1989; Alexandrescu et al., 
19921, and against the invariant amino acids Asp-87 and 
Asp-88, which are parts of the calcium-binding loop 
(Stuart et  al., 1986) involved in alac stability. Oligo- 
nucleotides were designed to obtain three sets of non- 
conservative mutations: (Phe-31/His-32) - (Met-31/ 
Asp-321, (Asp-87/88) - (Tyr87/88), and (Gln-ll7PTrp- 
118) - (Lys-117/Arg-118). However, due to PCR 
artifacts, five sets of mutations were actually obtained 
(see Materials and Methods and Figure 1). 

Expression of Wild-Type and Mutant Mouse alac 
cDNAs in Baculovirus-Infected Insect Cells. Re- 
combinant baculoviruses were obtained with the six 
cDNAs described in Figure 1 after they were subcloned 
into the transfer vector pVL941 and after cotransfection 
of Sf9 cells with these vectors along with wild-type 
AcNPV DNA. Secretion of recombinant alacs in the 
culture medium of Sf9 cells 72 h postinfection was 
performed by Western analysis (Figure 1). Production 
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Primer Observed Mutations Clone B. 

- 
M 1 : G C C A C T G G T A T M T A C A  

M2:CACGCTATGTBATBATCCAACTC 

M3:CAACGCCZCTZTTCAAGCTT 

- PLVW 

PHE- 31->MET p1v17 
HIS- 32->ASP 

ASP- 87->TYR p1v2 
ASP- 88->TYR 
ILE- 89->MET 

GLN-l17->LYS PLVlO 
TRP-l18->ARG 

GLN-l17->LYS p1v6 
TRP-l18->ARG 
CYS-12O->TRp 

GLN-l17->LYS p1v23 
TRP-l18->ARG 
CYS-120 ->STOP 
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RECOMBINANT MEDIUM aLAC LACTASE ASSAY 
alac CLONE CONCENTRATION 

MEDIUM VOL. alac ACTIVITY 
(alac ng) detected (ng) 

PLVW 

PLV2 

PLVG 

15 m g / l  10.0 p1 (150) 170 f 15 
6.7 p l  (100) 110 k 10 

I 0.05 m g / l  

7.5 m g / l  20 p l  (150) 0 
13.3 p1 (100) 0 

PLVlO 
PLV17 I 1 m g / l  
PLV23 

Figure 2. Levels of expression and enzymatic characterization of recombinant alacs. alac activity detected (ng) is expressed as 
equivalent amount of bovine alac. 

levels ranged from 15 mg/L for wild-type PLVW alac 
to less than 0.05 mg/L for mutant PLVB (Figure 1). 
These variations do not appear to be related to  the 
relative RNA levels encoding these alacs in infected Sfs 
cells (data not shown). Furthermore, the polyclonal 
rabbit anti-bovine-alac antibody used was previously 
shown to recognize all of the mutant alacs efficiently. 
When expressed in cos-cells, following transfection with 
recombinant CMV0.A.D expression vectors, similar 
amounts of the mutant proteins were detected in lysed 
cos-cells, while, as observed in infected insect cells, some 
alacs were not detected in the culture medium (unpub- 
lished results). These observations suggest that differ- 
ences in the levels of secreted alacs are mainly related 
to post-translational mechanisms. 

The apparent molecular weights of recombinant alacs 
were found to be similar to mouse milk alac for PLVW 
and 17, slightly higher for PLVG and 10, and slightly 
lower for PLVB and 23 (Figure 1 and data not shown). 
Again, similar observations were made when these 
cDNAs were expressed in cos-cells (unpublished obser- 
vations). 

Characterization of Recombinant alac PLVW 
and PLVG. Recombinant alacs PLVW and PLVG were 
tested for their ability to induce lactose synthesis in 
vitro in the presence of UDPgalactosyltransferase (see 
Materials and Methods). In this regard, alac PLVW has 
properties similar to those of milk-purified bovine alac, 
whereas alac PLVG was devoid of any detectable enzy- 
matic modulating activity (Figure 2). Mixing culture 
mediums from PLVW and PLVG Sf9 infected cells did 
not affect the activity of alac PLVW, suggesting the lack 
of enzymatic inhibitors in the medium from PLVG 
cultures. Other alac mutants were not tested because 
their concentration (less than 1 mg/L) was found to  be 
too low for direct measurement of their activity in the 
culture medium without prior purification steps, due to 
the sensitivity of our in vitro assay. 

DISCUSSION 

Secretion of biologically active “wild-type” goat and 
bovine alac by S. cerevisiae has been reported (Takeda 
et al., 1990; Viaene et al., 1991). However, the alac 

concentrations observed in the culture media were 
relatively low (less than 2 mg/L). Expression of alac 
cDNA in E. coli was more effective (up to  40 mg/L), but 
the protein was produced as an inclusion body of fused 
protein, needing proteolytic cleavage and refolding steps 
to obtain active proteins (Wang et al., 1989; Kumagai 
et al., 1991, 1992; Grobler et al., 1994). Expression 
levels were higher than those obtained in this experi- 
ment (up to 15 m e ) ,  but the baculovirus system 
allowed us to produce an active secreted alac, which can 
potentially be post-transcriptionally modified; the ef- 
ficiency of this system can probably be increased using 
new optimized vectors (Peakman et al., 1992). We also 
made several attempts to  produce recombinant alacs 
by transfecting cos-cells with CMVG0.A.D recombi- 
nant plasmids. This system, convenient for its simplic- 
ity and speed, allowed us to obtain only low concentra- 
tions of alac, less than 40 ng/mL (unpublished obser- 
vations). 

We have expressed a mutant alac devoid of enzymatic 
activity (Figures 1 and 2). Since the mutations in PLVG 
affect invariant residues of cluster I, this seems to 
confirm recent results suggesting that these residues 
have a functional role (Grobler et al., 1994). However, 
the artifactual extra mutation Cys-120 - Trp, which 
suppresses one of the four disulfide bridges of alac, 
might be alone responsible for the inactivity of PLV6. 
Further analysis of a PLV10-enriched medium should 
clarify the functional importance of both Gln-117 and 
Trp- 1 18. 

Transgenic animals are the most efficient system so 
far in terms of levels of expression (Vilotte et al., 1989; 
Soulier et al., 1992; Hochi et al., 1992) but also probably 
the most costly and time-consuming. However, the 
recent obtention of alac-deficient mice (Stinnakre et al., 
1994) and the now available possibility to replace the 
endogenous mouse alac gene by one carrying amino acid 
substitution(s) in ES cells (Stacey et al., 1994) open real 
opportunities to study in vivo the structure-function 
relationship in alac when potentially important alter- 
ation will have been suggested using expression systems 
such as the baculovirus one. 
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